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Introduction



Control of the heat equation 2

Q domain of R", w open subset of Q and T > 0.

Definition (Null-controllability of the heat equation on w in time T)

For every initial condition fy € L2(Q), there exists a control u € L([0, T] x w)
such that the solution f of:

of — Af =1,U, flaa =0, f(0)="fo

satisfies f(T,-) = 0 on Q.



Control of the heat equation 2

Q domain of R", w open subset of Q and T > 0.

Definition (Null-controllability of the heat equation on w in time T)

For every initial condition fy € L2(Q), there exists a control u € L([0, T] x w)
such that the solution f of:

of — Af =1,U, flaa =0, f(0)="fo
satisfies f(T,-) = 0 on Q.

Theorem (Control of the heat equation (Lebeau & Robbiano 1995, Fursikov &
Imanuvilov 1996))

Q a C? bounded connected open subset of R", w a non-empty open subset of
Q, and T > 0. The heat equation is null-controllable w in time T.



Notion of equation with low dissipation
Fractional heat equation and Kolmogorov-type equation
Half-heat equation and Baouendi-Grushin heat equation

Conclusion



Observability: a notion dual to controllability

Theorem
- The equation 0f — Af = 1,u is null-controllable on w in time T
if and only if
- for every solution of 9:.g — Ag = 0,

19(T. )iz < ClalEo,1xw)-



Observability: a notion dual to controllability

Theorem
- The equation 0f — Af = 1,u is null-controllable on w in time T
if and only if
- for every solution of 9:.g — Ag = 0,

19(T. )iz < ClalEo,1xw)-

Remark
Duality observability/controlability: happens for every linear equation.

(0r + A)f = Bu is null-controllable in time T if and only if for every go,

T
|e—TA gO‘Q S C/ ‘B*e—[A QO|2 dt
0
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Theorem (Spectral inequality, Jerison-Lebeau 1996)
Q a C? connected bounded open subset of R", w a non-empty open subset of
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¢r the eigenfunctions of —A, with eigenvalues Ay.

’ > kaﬁk’ < CGK\/E‘ > Grr
Ar<p @) Ap<p

L(w)
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Lebeau and Robbiano’s method 5

Theorem (Spectral inequality, Jerison-Lebeau 1996)
Q a C? connected bounded open subset of R", w a non-empty open subset of

Q.
¢r the eigenfunctions of —A, with eigenvalues Ay.

’ > kaﬁk’p .- CGK\/E‘ > Grr
ArSp @ A<

L(w)

- Allows to steer to zero the frequencies A\, <

- Dissipation of the heat equation: fo = Y aror
Ap>p

\emfoﬁzm) < efzut\foﬁzm)

- Dissipation > spectral inequality = null-controllability

- Depends only on the spectral inequality

- Also proves the null-controllability 9; + (—=A)* with a > 1/2
- What happens if a < 1/2?



Equations with low dissipation 6

Fractional heat (0; + (—A)*)f =1,u (@ <1/2)
- Spectral inequality: eXV#, dissipation: e~t"

- Not null-controllable [micu-zuazua, miller, K]
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Fractional heat (0; + (—A)*)f =1,u (@ <1/2)
- Spectral inequality: eXV#, dissipation: e~t"
- Not null-controllable micu-zuazua, miller, K]

Baouendi-Grushin heat (9; — d; — x*9))f = 1,u
- Spectral inequality: eX*, dissipation: e~
- Null-controllable only in large enough time if w /——ﬁ X
[Beauchard-Cannarsa-Guglielmi, Beauchard-Miller-Morancey, Beauchard-Dardé-Ervedozal
- Not null-controllable if w \—‘$A X
[K, Duprez-K]
Kolmogorov-type (9; — 92 + v2o,)f = 1,u
- Spectral inequality: eX*, dissipation: e~tv# v .
- Null-controllable in large enough time ifw/‘%

[Beauchard-Zuazua, Beauchard, Beauchard-Helffer-Henry-Robbiano, Dardé-Royer] v

- Not null-controllable if w /:H* X

(K]




What about approximate controllablity?

Approximate controllability _ o _
A system (0; + A)f = Bu is approximately conntrollable in time T if for every

e > 0, and for every states fo, f1, there exists a control u(t) such that
If(T) — f1] < e, with
(0 + A)f(t) = Bu(T), f(0) = fo.

Some examples
- Fractional heat for a < 1/2: 7?2?

- Baouendi-Grushin: approximately controllable in arbitrarily small time on
any open non-empty w

- Kolmogorov-type: ???

- Hypoelliptic (0: — > X X)f (t,x) = 1, u(t, x): with some technical
hypotheses, approximately controllable in large enough time [Laurent-Léautaud]



Fractional heat equation and
Kolmogorov-type equation




Fractional heat equation 8

Fractional heat equation

- Fractional Laplacian: (—=A)*f = F~'(|¢)**Ff(€))
- Control system: (9; + (—A)*)f(t,x) =1,u, X€R



Fractional heat equation 8

Generalized Fractional heat equation

- Fractional Laplacian: p(v—A) = F~(p(I€))Ff(€))
- Control system: (0 + p(vV—A))f(t,x) =1,u, Xx€R



Fractional heat equation 8

Generalized Fractional heat equation

- Fractional Laplacian: p(v—A) = F~(p(|€])Ff(€))
- Control system: (9 + p(vV—A))f(t,x) = 1,u, x€R
Theorem (Non-null-controllability of the fractional heat equation (K 2019))
Let K > 0 and C = {R(&) > K, [S(&)| < KR(&)}. Let p: CUR, — C such that
: inf§>o ?R(p(f)) > —00
- pis holomorphic on C

- p=oJ¢]) for |¢] — +o0, € € € K

Let T > 0 and w a strict open subet of R. The equation

(0 + p(V=D))f =1.u

is not null-controllable on w in time T.



Fractional heat equation: non-null-controllability

Q=R ,w={[x| > ¢}
Non-null-controllability of 9; + p(v/—A).

- Controlability < observability:
(O +p(V=24))g =0 = [9(T,")|iz@) < Clgliz(o,mxw)
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Fractional heat equation: non-null-controllability

Q=R ,w={[x| > ¢}
Non-null-controllability of 9; + p(v/—A).

- Controlability < observability:
(O +p(vV=A))g =0 = [9(T,")|e@) < Clgliqo,nxw)
- go that concentrates at 0: go(x) = x(hDy — & )e=*72+ix&/h

g(t, x) = cpeo/n—212h / © (&)~ E M /2—tA((E+60) /) g
R

- Saddle point method:

1
g(t,x) =0 (We“/h> x| > e

g(t, x) = elo/h—x/2h="0(o(1/h)’ x| < & O



Kolmogorov-type equation

A Kolmogorov-type equation
(8t - 8\3 + vzﬁx)f(t,x, V) = 1wu(taX7 V)7 X € Ra veR
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A Kolmogorov-type equation
(at - 8\3 + vzﬁx)f(t,x, V) = 1wu(taX7 V)7 X € Ra veR

«Embedding» of the fractional heat in the Kolmogorov-type equation
- For £ e R, e~ Viev/2+ixg eigenfunction, eigenvalue +/i¢

- Particular solution: g(t, x,v) = /a(g)eiXEf\/E(tJrVZ/Z) d¢
JR

- In x-variable: solution of (8; + V/i(—=Ax)"*)g(t,x) = 0



Kolmogorov-type equation

A Kolmogorov-type equation
(8t - 8\3 + Vzax)f(t,X, V) = 1wu(taX7 V)7 X € Ra veR

«Embedding» of the fractional heat in the Kolmogorov-type equation
- For € € R, e~ Vi&/2+ix¢ gigenfunction, eigenvalue Vi€

- Particular solution: g(t, x,v) = /a(g)eiXEf\/E(tJrVZ/Z) d¢
JR

- In x-variable: solution of (8; + V/i(—=Ax)"*)g(t,x) = 0

Theorem (Kolmogorov-type controlled on vertical strip)
Let T > 0, wy, a strict open subset R and w = w, x R. The Kolmogorov-type
equation is not null-controllable on w in time T.
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A Kolmogorov-type equation
(8t - 8\3 + V18X)f(t,X., V) = 1wu(tax7 V)7 X € Ra Ve IRJr

«Embedding» of the fractional heat in the Kolmogorov-type equation
- For € € R, Ai(¢'/3e=m/6y — u) eigenfunction, eigenvalue e'™/3o£%/3
- Particular solution: g(t, x,v) = / a(€)e™ =t ot pje=in/6¢1 3y _ o) de
- In x-variable: pertubation of (atﬂi e B o (—0x)'"3)g(t,x) =0

Theorem (Kolmogorov-type controlled on vertical strip)

Let T > 0, wy a strict open subset R and w = w, x R. The Kolmogorov-type
equation Is not null-controllable on w in time T.



Kolmogorov-type equation

A Kolmogorov-type equation
(8t - 8\3 + V18X)f(t,X., V) = 1wu(tax7 V)7 X € Ra Ve IRJr

«Embedding» of the fractional heat in the Kolmogorov-type equation
- For € € R, Ai(¢'/3e=m/6y — u) eigenfunction, eigenvalue e'™/3o£%/3
- Particular solution: g(t, x,v) = / a(€)e™ =t ot pje=in/6¢1 3y _ o) de
- In x-variable: pertubation of (atﬂi e B o (—0x)'"3)g(t,x) =0

Theorem (Kolmogorov-type controlled on vertical strip)

Let T > 0, wy a strict open subset R and w = w, x R. The Kolmogorov-type
equation Is not null-controllable on w in time T.

More equations/results
- 1-D torus in x, segment in v
- (0} — 0202 — 92)f (t,x) = 1,u(t,x), perturbation of (—A)°
?



Half-heat equation and
Baouendi-Grushin heat equation




Half-heat equation

Half-heat equation

- Half-Laplacian: A(Zf ’”X) = Z|n|l?(ﬂ)e’”x

nez nez
- Control system: (0; + V—=A)f(t,x) =1,u, x€T



Half-heat equation

Half-heat equation

- Half-Laplacian: A(Zf ’”X) = Z|n|f(n)e’”x

nez nez
- Control system: (0 + vV—=A)f(t,x) =1,u, xe€T

Theorem (Non-null-controllability)
Let T > 0 and w a strict open subset of T. The half-heat equation

(01 + V=) =

is not null-controllable on w in time T.



Non-null-controllability of the half heat

Proof.
Test observability inequality with g(t,x) = >, @ e
) 2
Z an|2e?"T < C/ ape~"ei™| dtdx
n>0 [0,T]xw

n>0



Non-null-controllability of the half heat

Proof.
Test observability inequality with g(t,x) = >, a,e—"teinx.
) 2
Z \aﬂ|2e_2”T < C/ ane—ntemx dt dx
n>0 [0,71xw I h<g

- Change of variables: z = e+

191210, 1) = / > a2

p ' n>0

2
dA(2)

- Computation in polar coordinates:

2
19(T, izqry 27F1/ > a2 dA(@2)

D(0.e=T) ™0




Non-null-controllability of the half heat

Proof.
Test observability inequality with g(t,x) =>_

Z \aﬂ|2e_2”T < C/

n>0 [0,T]xw
- Change of variables: z = e~t+¥

191210, 1) = / > a2

p ' n>0

- Computation in polar coordinates:

\g(T,~)|fz(T) > 7r*1/ Zaner

D(0,e~ )”>O

+ Observability = for every p € C[X], |pli2p(0.e 7)) < CIPliap)

—nt pinx.
n>0 ane e’

2
dtdx

ane—ntemx

n>0

2
dA(2)

2
dA(2)

D(0,e~T)

- Not true according to the Runge theorem (there exists pr(z) — 1/z away
from C\ e’R,) O



Baouendi-Grushin heat equation

Baouendi-Grushin heat equation
(0 — 05 = X°Of(t,x,y) = Lu(t,x,y), xER,y €T



Baouendi-Grushin heat equation

Baouendi-Grushin heat equation
(0 — 05 = X°Of(t,x,y) = Lu(t,x,y), xER,y €T

«Embedding» of the half-heat in the Baouendi-Grushin heat equation

2 2 o o o
- For n € N, e=™/2+iny ejgenfunction, eigenvalue n

+ Particular solutions: g(t,x,y) = Y _a,e™"" 2y
n>0
- In the y-variable: solution of the half-heat equation



Control of the Baouendi-Grushin heat equation

Theorem (Baouendi-Grushin heat equation on horizontal strip)

Yy
w=Rxwy
« Not null-controllable on w (whatever T > 0)
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w=(a,b) xR
L x Null-controllable on w if and only if T > a%/2




Control of the Baouendi-Grushin heat equation

Theorem (Baouendi-Grushin heat equation on horizontal strip)

w=Rxwy
« Not null-controllable on w (whatever T > 0)

I

Theorem (Beauchard-Dardé-Ervedoza 2018)
y

w=(a,b) xR
x Null-controllable on w if and only if T > a%/2

3

Theorem (Duprez-K 2018)

w = {n(y) <x <7(y)}, a=max(sup(y; ),sup(7"))
Null-controllable on w if T > a%/2
X Not null-controllable on w if T < a?/2

i
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- Null-controlability in large time known on vertical strip
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Large time null-controllabilty

Proof.

Uright

- Null-controlability in large time known on vertical strip

* Ut control on a vertical strip on the left (possible if T > a%/2)

* Uright control on a vertical strip on the right (possible if T > a%/2)

- x cutoff with Supp(Vy) C w, x = 0 «left of w» and y = 1 «right of w»

* f = Xftert + (1= X)frignt-
(8 — 82 — X2O2)f = XUieft + (1 — X)Urignt + terms involving Vy, Ax O



Non-null-controllability in small time

Proof.

+ Particular solutions: g(t,x,y) = Y _a,e™"" mefatiny - p(z) = > a™

n>0 n>0

jan? -
+ Lower bound LHS: [g(T,-,-)[f > > #e 2T > clply :



Non-null-controllability in small time

Proof.

+ Particular solutions: g(t,x,y) = Y _a,e™"" mefatiny - p(z) = > a™

n>0 n>0
2
+ Lower bound LHS: [g(T,-,-)[f > > %ez'ﬂ > clplZp0.e-)

) +oo
< RHS:chg of varz = 4% o .y = [ [ Ip@P dAa ax

—oo  J Dy

DX = {e—t+/'y—)<2/27 te [07 T]7 (va) € OU}




Non-null-controllability in small time

Proof.

- Particular solutions: g(t,x,y) = Y _ ane™ "=/ - p(z) = 3" g,z

n>0 n>0

2
 Lower bound Li: [g(7, ) = 3 1 e 2 > el . 1

) +oo
- RHS: chg of var z = e~t+y—x72. 191B2(0.7)xw) = / a Ip(2)> d\(z) dx

Dy = {e~"V 72 te[0,T], (x,y) € w}
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Non-null-controllability in small time

Proof.

- Particular solutions: g(t,x,y) = Y _ ane™ "=/ - p(z) = 3" g,z

n>0 n>0

2
 Lower bound Li: [g(7, ) = 3 1 e 2 > el . 1

) +oo
- RHS: chg of var z = e~t+y—x72. 191B2(0.7)xw) = / a Ip(2)> d\(z) dx

Dy = {2 te[0,T], (x,y) € w}
+ Observability = for every p € C[X], |Pli2p(0.e 7)) < CIPlieo(k) O

D(0,e7T)




Error terms

Baouendi-Grushin heat on a bounded domain
(0 — 9 —x*9)g(t,x,y) =0, x € ]-1,1[, y € T, Dirichlet boundary
conditions
- Eigenfunction: v,(x) = w,(x)e="72+V eigenvalue: A, = n+py

- Particular solutions: g(t,x,y) = Zane*”XZ/Z*””’WWn(X)e*p”I
n>0



Error terms

Baouendi-Grushin heat on a bounded domain

(0 — 9 —x*9)g(t,x,y) =0, x € ]-1,1[, y € T, Dirichlet boundary
conditions

- Eigenfunction: v,(x) = vvn(x)e*”x7/2+"”y, eigenvalue: Ay = n+pn

- Particular solutions: g(t,x,y) = Zane*”XZ/Z*””"”VWn(X)e*p”I

n>0

Definition
(7(n)) a sequence. H, the operator on polynomials

H,y: Z apz" — Zy(n)anz”

Find continuity-like estimates for H, in the right norms



Estimations on the operators H,

Theorem
~ holomorphic bounded on {®(z) > C}. K a compact subset of C. U D K,

open, star-shaped with respect to 0. p = >~ a,z" € C[X]
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Proof. : : ,
Wit K,(6) = Sa(n)e", Hop@) =5 § 1K, (C) p(C)dc
- Theorem : K, (¢) extends holomorphically to ¢ ¢ [1, +o0]

- Change of integration path:
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|H,p(2)| =
n>0

Apply this to v(n) = wy(x)e=t :

2
/ Z aﬂe_”xz/z_”tJri”yWn(X)e_””t dtdy < Carea(Dy)
b, | >0

Z anzn—W

Lee(U)




Spectral analysis of the harmonic oscillator on (—1,1)

Semiclassical non self-adjoint harmonic oscillator
R(z) >0,  Ppi=-07+2°x* D(Pp) = H*(-1,1)NHH(—1,1)
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Spectral analysis of the harmonic oscillator on (—1,1)

Semiclassical non self-adjoint harmonic oscillator
R(h) >0,  Pp:=—h*+x3, D(Py)=H*(~1,1)NHy(-1,1)

Theorem
Let A\, be the (holomorphic continuation of the) first eigenvalue of Py,. Let

6 € (0,7/2). Then for |h| — 0, |arg(h)| < 8, Ay ~ h + e~ /P (4\/54- : )



Spectral analysis of the harmonic oscillator on (—1,1)

Semiclassical non self-adjoint harmonic oscillator

R(h) >0,  Ppi=—h?0}+x*, D(Pp)=H(=1,1)NHH(-1,1)
Theorem
Let A\, be the (holomorphic continuation of the) first eigenvalue of Py,. Let

6 € (0,7/2). Then for |h| — 0, |arg(h)| < 8, Ay ~ h + e~ /P (4\/54- : )

Sketch of the proof by ODE techniques. h(1+ 2p)
- For X € C, write solution of —h?u” +x2u = X u:
U (x) = e/ /e—(t2/4+xt)/h—(1+p)In(t) dqt

some complex path I
- X eigenvalue “&” &(h,p) := (1+€™)us (1) — (1+ e ™)u_(-1)=0
- Solve the previous implicit equation (for p = p(h) with a Newton scheme:
po(h) =0, pna(h) = pa(h) — 9,0 (h, pn(h))~'®(h, pn(h))
- Saddle point method: estimate for Newton and p;(h) ~ e=/"2(zxh)="/2 O



Conclusion




Control of parabolic equation with low dissipation

Low diffusion = not null-controllable in arbitrarily small time
- Fractional heat equation with low dissipation: not null-controllable

- Baouendi-Grushin heat: geometric condition for null-controllability
Relevant quantity: maximum Agmon distance between {x = 0} and w?

- Kolmogorov-type: geometric control condition for nul-controllability?
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That's all folks!
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