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Introduction



Null-controllability of PDEs 2

Q domain of R", w an open subset of Q and T > 0.

Definition (Null-controllability of the heat equation on w in time T)

For every initial condition fy € L2(Q), there exists a control u € L([0, T] x w)
such that the solution f of:

of — Af =1,U, flaa =0, f(0)="fo

satisfies f(T,-) = 0 on Q.
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Theorem (Null-controllability of the heat equation (Lebeau & Robbiano 1995,
Fursikov & Imanuvilov 1996))

Q a C? connected bounded open subset of R", w a non-empty open subset of
Q, and T > 0. The heat equation is null-controllable on w in time T.



Parabolic-Transport Systems 3

The equation:

A (t,X) + ADS(t, ) — BOF(t, x) + KF(t,X) = Tou(t,x), (t,X) € [0, +oo[ x T

0 0 9nQ o A]] A12
B = , D+ D* positive-definite; A= , A = A7
(o D)  DEUTP (A21 A22> e

Coupling between parabolic and transport equations

fo fn (Or + A1 Oy + Ki)fn(t, X) + (A120x + K2)fp(t, ) = 1, up(t, X)
fo ) 1 (0 — DOZ + Apdy + Kn)fp(t, X) + (A0 + Kt )fn(t, X) = 1, Up(t,X)

Question
For every, fo € [?(T,CY%) does there exist u € L?([0, T] x w,CY) such that

f(T,-) =072 What if we ask for u, =0 (oru, =0)?



The results



Controllability of parabolic-transport systems

Theorem (Beauchard-K-Le Balc’h 2019)

w an open interval of T.
21 — length(w)

B minHGSP(Aﬂ) |M|

*

Then

1. the system is not null-controllable on w in time T < T*,
2. the system is null-controllable on w in time T > T*.

Minimal time = minimal time for the transport equation
In the case
Ofn + Andxfn = Unlw

Free solutions = sums of waves travelling at speed py, € Sp(A).



Partial control 5

Theorem (Hyperbolic control, D = I and K = 0, Beauchard-K-Le Balc’h 2020)

f _ fh (8t I Aﬂax)fh(t,)() I A128Xfp(t,)() = 1th(t,X)
o)’ (O = 85 + A220:)fp(t, X) + Andufn(t, x) = 0

Controllability in time T > T* for initial conditions with zero average iff

Vect{AL,Anv,i € N,v € C%} = C%

Theorem (Parabolic control and K = 0, Beauchard-K-Le Balc’h 2020)

f= fh (Ot + And)fn(t, x) + Ar2Osfp(t, x) = 0
fp ’ (at i Da; T+ Azzax)fp(t,)() +A218th(t,X) = 1wUp(t,X)

Controllability in time T > T* for initial conditions in H%*" with zero average if
Vect{Aj,Apv,i € N,v € C%} = C%



Example: Linearized compressible Navier-Stokes 6

Navier-Stokes . .
p. fluid density. v: fluid velocity. a,~, u > 0.

Ocp + Ox(pv) = 1uuq(t,x) on [0,T] x T
p(Ov + Vo) + dx(apY) — ud2v = 1,Uy(t,x) on[0,T] x T

Linearization around a stationnary state (p,v) € R} x R*:

Op + VOxp + poxv = 1,Uq(t,x) sur[0,T] x T
OV + VOV +ap? 2 0kp — LIV = 1,Ua(t,x) on [0,T] x T
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+ [Ervedoza-Guerrero-Glass-Puel 2012]: equation posed on (0, L), boundary control
actingon (p,v) intime T > L/|V|

* [Chowdhury-Mitra-Ramaswamy-Renardy 2014]: velocity control in time T > 2x/|v| for the
initial conditions (po, Vo) € H' x L2.

- [Beauchard-K-Le Balch 2020] With A = (aﬁ"’ ; ) and B = (g M/p) velocity control,
intime T > (2 — length(w))/|V| for |mt|al conditions in H? x H?.



(Idea of the) proof




Parabolic Components, Hyperbolic Components

Fourier components .
_BO2 + AdIXe™ = n? B+ La) xeim
(-BF !

Spectrum of —Bd?2 + Ady .
Sp(—Bd; + Ady) = {n2 Sp (B + r’)A)}
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. 2 e 2 P
- Free solutions: = mee’”x n"Anet anke’”x ARt Zere’”X gt
parabolic hyperbolic

- Well-posed if R(Ar) > 0and ur € R
- Not null-controllable in small time
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Decouple and control
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Decouple and control

- For up, find u, that controls parabolic frequencies in time T

N\ >
0 K—I T'<T

- For up, find uj, that controls the hyperbolic frequencies in time T

- If both steps agree, OK

- Make the two steps agree by choosing u, smooth and using the Fredholm
alternative (on a finite codimension subspace)

- Step 1: null-controllability of a parabolic equation intime T —T" > 0

- Step 2: exact controllability of a perturbed transport equation in time T'.
Okif 7" >T*.

- Deal the finite dimensional subspaces that are left:
compactness-uniqueness



Novelty with respect to Lebeau-Zuazua )

Systems of arbitrary size

- Strategy as described until now: Lebeau-Zuazua (1998) for linear systems
of thermoelasticity (coupled heat-wave)

- Our work: generalize for systems of arbitrary size



Novelty with respect to Lebeau-Zuazua )

Systems of arbitrary size

- Strategy as described until now: Lebeau-Zuazua (1998) for linear systems
of thermoelasticity (coupled heat-wave)

- Our work: generalize for systems of arbitrary size

- Difficulty: eigenvalues and eigenvectors B + %A can behave badly as
n — +oo

- Solution: don’t use eigenvectors nor eigenvalues

- We use total eigenprojections: sum of eigenprojections associated to
eigenvalues that are close to each other (Kato's perturbation theory...)

,
——— PpM—-2)""dz =
2/7T r( )

Eigenprojection on eigenspaces associated
to eigenvalues of M lying inside I

- Kato's reduction process
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Conclusion

Parabolic-transport ~ transport
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Open problems
- domain other that T?
- less controls than equations?
- non-constant coefficient?

- unique continuation?



That's all folks!
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