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Ω domain of Rn, ω an open subset of Ω and T > 0.

Definition (Null-controllability of the heat equation on ω in time T)
For every initial condition f0 ∈ L2(Ω), there exists a control u ∈ L2([0, T]× ω)

such that the solution f of:

∂tf −∆f = 1ωu, f|∂Ω = 0, f (0) = f0

satisfies f (T, ·) = 0 on Ω.

Theorem (Null-controllability of the heat equation (Lebeau & Robbiano 1995,
Fursikov & Imanuvilov 1996))
Ω a C2 connected bounded open subset of Rn, ω a non-empty open subset of
Ω, and T > 0. The heat equation is null-controllable on ω in time T.
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The equation:

∂tf (t, x) + A∂xf (t, x)− B∂2x f (t, x) + Kf (t, x) = 1ωu(t, x), (t, x) ∈ [0,+∞[× T

B =

(
0 0
0 D

)
, D+ D∗ positive-definite ; A =

(
A11 A12
A21 A22

)
, A11 = A∗11.

Coupling between parabolic and transport equations

f =
(
fh
fp

)
,

{
(∂t + A11∂x + K11)fh(t, x) + (A12∂x + K12)fp(t, x) = 1ωuh(t, x)
(∂t − D∂2x + A22∂x + K22)fp(t, x) + (A21∂x + K21)fh(t, x) = 1ωup(t, x)

Question
For every, f0 ∈ L2(T,Cd) does there exist u ∈ L2([0, T]× ω,Cd) such that
f (T, ·) = 0 ? What if we ask for uh = 0 (or up = 0) ?



The results
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Theorem (Beauchard-K-Le Balc’h 2019)
ω an open interval of T.

T∗ =
2π − length(ω)

minµ∈Sp(A11) |µ|

Then

1. the system is not null-controllable on ω in time T < T∗,
2. the system is null-controllable on ω in time T > T∗.

Minimal time = minimal time for the transport equation
In the case

∂tfh + A11∂xfh = uh1ω

Free solutions = sums of waves travelling at speed µk ∈ Sp(A11).
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Theorem (Hyperbolic control, D = I and K = 0, Beauchard-K-Le Balc’h 2020)

f =
(
fh
fp

)
,

{
(∂t + A11∂x)fh(t, x) + A12∂xfp(t, x) = 1ωuh(t, x)
(∂t − ∂2x + A22∂x)fp(t, x) + A21∂xfh(t, x) = 0

Controllability in time T > T∗ for initial conditions with zero average iff
Vect{Ai22A21v, i ∈ N, v ∈ Cdh} = Cdp

Theorem (Parabolic control and K = 0, Beauchard-K-Le Balc’h 2020)

f =
(
fh
fp

)
,

{
(∂t + A11∂x)fh(t, x) + A12∂xfp(t, x) = 0
(∂t − D∂2x + A22∂x)fp(t, x) + A21∂xfh(t, x) = 1ωup(t, x)

Controllability in time T > T∗ for initial conditions in Hd1+1 with zero average if
Vect{Ai11A12v, i ∈ N, v ∈ Cdp} = Cdh .



Example: Linearized compressible Navier-Stokes 6

Navier-Stokes
ρ: fluid density. v: fluid velocity. a, γ, µ > 0.{

∂tρ+ ∂x(ρv) = 1ωu1(t, x) on [0, T]× T
ρ(∂tv + v∂xv) + ∂x(aργ)− µ∂2xv = 1ωu2(t, x) on [0, T]× T

Linearization around a stationnary state (ρ̄, v̄) ∈ R∗
+ × R∗ :{

∂tρ+ v̄∂xρ+ ρ̄∂xv = 1ωu1(t, x) sur [0, T]× T
∂tv + v̄∂xv + aρ̄γ−2∂xρ− µ

ρ∂
2
xv = 1ωu2(t, x) on [0, T]× T

• [Ervedoza-Guerrero-Glass-Puel 2012]: equation posed on (0, L), boundary control
acting on (ρ, v) in time T > L/|v̄|

• [Chowdhury-Mitra-Ramaswamy-Renardy 2014]: velocity control in time T > 2π/|v̄| for the
initial conditions (ρ0, v0) ∈ H1 × L2.

• [Beauchard-K-Le Balc’h 2020] with A =
( v̄ ρ̄

aρ̄γ−2 v̄
)
and B =

( 0 0
0 µ/ρ

)
: velocity control,

in time T > (2π − length(ω))/|v̄| for initial conditions in H2 × H2.
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(Idea of the) proof
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Fourier components
(−B∂2x + A∂x)Xeinx = n2

(
B+

i
n
A
)
Xeinx

Spectrum of −B∂2x + A∂x
Sp(−B∂2x + A∂x) =

{
n2 Sp

(
B+

i
n
A
)}

Perturbation theory
λnk eigenvalue of B+ i

nA. λk eigenvalue of B: λnk → λk ∈ Sp(B)

• If λk 6= 0, n2λnk ∼
n→+∞

n2λk: parabolic frequencies

• If λk = 0, n2λnk ∼
n→+∞

inµk: hyperbolic frequencies

• Free solutions: =
∑

Xnkeinx−n
2λnkt ≈

∑
parabolic

Xnkeinx−n
2λkt +

∑
hyperbolic

Xnkeinx−inµkt

• Well-posed if <(λk) > 0 and µk ∈ R

• Not null-controllable in small time
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Control Strategy 8

Decouple and control

• For uh, find up that controls parabolic frequencies in time T

•
0 T ′ T<

• For up, find uh that controls the hyperbolic frequencies in time T
• If both steps agree, OK
• Make the two steps agree by choosing up smooth and using the Fredholm
alternative (on a finite codimension subspace)

• Step 1: null-controllability of a parabolic equation in time T − T ′ > 0
• Step 2: exact controllability of a perturbed transport equation in time T ′.
Ok if T ′ > T∗.

• Deal the finite dimensional subspaces that are left:
compactness-uniqueness
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Novelty with respect to Lebeau-Zuazua 9

Systems of arbitrary size

• Strategy as described until now: Lebeau-Zuazua (1998) for linear systems
of thermoelasticity (coupled heat-wave)

• Our work: generalize for systems of arbitrary size

• Difficulty: eigenvalues and eigenvectors B+ i
nA can behave badly as

n→ +∞
• Solution: don’t use eigenvectors nor eigenvalues
• We use total eigenprojections: sum of eigenprojections associated to
eigenvalues that are close to each other (Kato’s perturbation theory…)

− 1
2iπ

∮
Γ

(M− z)−1 dz = Eigenprojection on eigenspaces associated
to eigenvalues of M lying inside Γ

• Kato’s reduction process
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Conclusion
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Parabolic-transport ' transport

• null-controllable iff transport is controllable

Open problems

• domain other that T?
• less controls than equations?
• non-constant coefficient?
• unique continuation?
• …
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That’s all folks!
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