An inequality on operators on polynomials

Armand Koenig

17 October 2022

Workshop on Control Problems 2022

Introduction

Introduction

The problem Estimating

$$\|\underbrace{\sum_{n} \gamma(n) a_n z^n}_{\gamma(z\partial_z)(\sum_n a_n z^n)} \| \le C \| \sum_n a_n z^n \|$$

if $\mathcal{V}(n) = m$ $\mathcal{X}(z\partial_z) P = (z\partial_z) P$

for useful norms.

The problem Estimating

$$\|\underbrace{\sum_{n} \gamma(n) a_n z^n}_{\gamma(z\partial_z)(\sum_n a_n z^n)} \| \le C \|\sum_n a_n z^n \|$$

for useful norms.

Simple hilbertian idea Orthognality of $z \mapsto z^n$ on D(0, R):

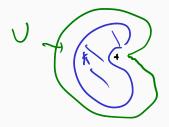
$$\|\gamma(Z\partial_Z)P\|_{L^2(D(0,R))} \leq \sup_n |\gamma_n|\|P\|_{L^2(D(0,R))}.$$

What about L^p-norm on domain which are not a disk?

Theorem

Let $\gamma: \{z \in \mathbb{C}, \Re(z) > 0\} \to \mathbb{C}$ holomorphic and bounded. Let $K \subset \mathbb{C}$ compact. Let U be an open neighbourhood of K that is star-shaped with respect to 0. There exists C > 0 such that for every polynomial P,

 $\|\gamma(z\partial_z)P\|_{L^{\infty}(K)} \leq C\|P\|_{L^{\infty}(U)}.$



Idea of the proof

$\gamma(z\partial_z)$ is a convolution operator

Convolution operator

Theorem

Assume $\sup_n |\gamma(n)| < +\infty$. Let

$$\mathcal{K}_{\gamma}(\zeta) = \sum_{n} \gamma(n) \zeta^{n}.$$

Then, for |z| < R

$$\gamma(z\partial_z)P(z) = \frac{1}{2i\pi} \oint_{\partial D(0,R)} P(\zeta)K_{\gamma}\left(\frac{z}{\zeta}\right) \frac{\mathrm{d}\zeta}{\zeta}.$$

Proof.
$$P(3) = \sum \sigma_n z^n$$
 (aucly: $a_* = \frac{1}{2^{i}\Pi} \oint \frac{P(S)}{\partial D(o_i R)^{n+1}} dS$
 $F(3^3) P(3) = \sum \overline{r(n)} \sigma_n z^n = \frac{1}{2^{i}\Pi} \oint \frac{2^{i}\overline{r(n)}}{\partial D(o_i R)} \frac{P(S)}{S^{i}\overline{r(n)}} dS$

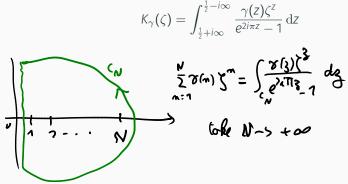
Theorem (Lindelöf (1905))

Assume $\gamma : \{\Re(z) > 0\} \to \mathbb{C}$ is holomorphic and bounded. Then $K_{\gamma}(\zeta) = \sum_{n} \gamma(n) \zeta^{n}$ extends as a holomorphic function on $\mathbb{C} \setminus [1, +\infty)$.

Theorem (Lindelöf (1905))

Assume $\gamma : \{\Re(z) > 0\} \to \mathbb{C}$ is holomorphic and bounded. Then $K_{\gamma}(\zeta) = \sum_{n} \gamma(n) \zeta^{n}$ extends as a holomorphic function on $\mathbb{C} \setminus [1, +\infty)$.

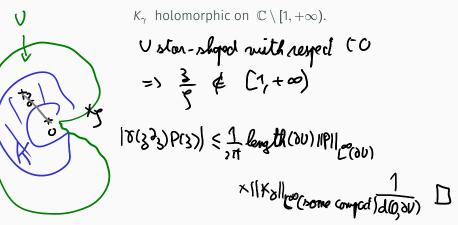
Idea of the proof.



Change of integration path

Proof of the estimate.

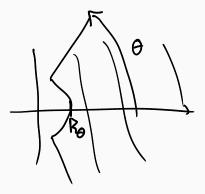
$$\gamma(z\partial_z)P(z) = \frac{1}{2i\pi} \oint_{\partial P(\zeta,R)} P(\zeta)K_{\gamma}\left(\frac{z}{\zeta}\right) \frac{\mathrm{d}\zeta}{\zeta}.$$



Tricks

Variants

- Same estimate with γ holomorphic on $\bigcup_{\theta \in (0, \pi/2)} \{|\arg(z)| < \theta\} \setminus D(0, R_{\theta}),$ with sub-exponential growth on every $\{|\arg(z)| < \theta\}$
- If γ holomorphic on $\mathbb{C} \setminus D(0, R)$ and $\gamma(1/z)$ holomorphic at 0, version with U simply connected with $0 \in U$ (instead of U star-shaped with respect to 0).



Variants

- Same estimate with γ holomorphic on $\bigcup_{\theta \in (0,\pi/2)} \{|\arg(z)| < \theta\} \setminus D(0, R_{\theta}),$ with sub-exponential growth on every $\{|\arg(z)| < \theta\}$
- If γ holomorphic on $\mathbb{C} \setminus D(0, R)$ and $\gamma(1/z)$ holomorphic at 0, version with U simply connected with $0 \in U$ (instead of U star-shaped with respect to 0).

Following the constants

 $\cdot\,$ Everything is continuous with respect to their natural topologies

$$\cdot \begin{array}{ccc} L^{\infty}(\mathbb{C}_{+}) \cap \mathcal{O}(\mathbb{C}_{+}) & \to & \mathcal{L}(L^{\infty}(U) \cap \mathcal{O}(U), L^{\infty}(K) \cap \mathcal{O}(K)) \\ \gamma & \longmapsto & \gamma(Z\partial_{2}) \end{array}$$
 is continuous

• $\|\gamma(z, z\partial_z)P\|_{L^{\infty}(K)} \leq \sup_{\zeta \in K} \|\gamma(\zeta, z\partial_z)P\|_{L^{\infty}(K)} \leq C\|P\|_{L^{\infty}(U)}$ (assuming uniform bounds on $\gamma(\zeta, z)$)

Applications

Control of the Baouendi-Grushin equation See Jérémi Dardé's talk

Applications

Eigenfunction of $-z^2 \partial_x^2 + x^2$ on (-1, 1) (with application to the control of a Kolmogorov-type equation)

•
$$heta_0 \in (0, \pi/2)$$
, limit $|z| \rightarrow 0$, $|arg(z)| < heta_0$

• First eigenvalue: $\lambda_z = z + 4\sqrt{\frac{z}{\pi}}e^{-1/z}(1+O(z)) = z(1+2\rho_z)$

• Asymptotics for the first eigenfunction $g_z(x)$?

$$(\partial_{t} - \partial_{v}^{2} + v^{2} \partial_{x}) g(f_{1}v, x) = C$$

$$\begin{cases} \mathcal{F}_{x} \\ \partial_{t} - \partial_{v}^{2} - i \int_{v}^{2} v^{2} \\ \partial_{t} & v^{2} \end{cases}$$

Applications

Eigenfunction of $-z^2 \partial_x^2 + x^2$ on (-1, 1) (with application to the control of a Kolmogorov-type equation)

•
$$heta_0 \in (0,\pi/2)$$
, limit $|z|
ightarrow 0$, $| {
m arg}(z) | < heta_0$

- First eigenvalue: $\lambda_z = z + 4\sqrt{\frac{z}{\pi}}e^{-1/z}(1+O(z)) = z(1+2\rho_z)$
- Asymptotics for the first eigenfunction $g_z(x)$?
- Write equation for $w_z(x) = e^{x^2/2z}g_z(x)$, solve it as a power series:

$$w_{z}(x) = 1 + \rho_{z} \sum_{n>1} \left(-\frac{1}{2n} \frac{4^{n}(n!)^{2}}{(2n)!} \prod_{k=1}^{n-1} \left(1 - \frac{\rho_{z}}{2k} \right) \right) \frac{1}{n!} \left(\frac{x^{2}}{z} \right)^{n}.$$

$$= 1 + \ell_{z} \mathcal{B}_{z}(x) (e^{x^{2}/3} - 1)$$

$$= 1 + \mathcal{O}(e^{-1/3} + x^{2}/3 + 4/3)$$

$$= e^{-x^{2}/2} \left(1 + \mathcal{O}(e^{-C/8}) \right)$$

That's all folks!