An inequality on operators on polynomials

Armand Koenig

17 October 2022
Workshop on Control Problems 2022

Introduction

The problem Estimating
for useful norms.

Introduction

The problem
Estimating

$$
\|\underbrace{\sum_{n} \gamma(n) a_{n} z^{n}}_{\gamma\left(z z_{z}\right)\left(\sum_{n} a_{n} z^{n}\right)}\| \leq c\left\|\sum_{n} a_{n} z^{n}\right\|
$$

for useful norms.
Simple hilbertian idea
Orthognality of $z \mapsto z^{n}$ on $D(0, R)$:

$$
\left\|\gamma\left(z \partial_{z}\right) P\right\|_{L^{2}(D(0, R))} \leq \sup _{n} \mid \gamma_{n}\| \| P \|_{L^{2}(D(0, R))} .
$$

What about L^{p}-norm on domain which are not a disk?

The estimate

Theorem

Let $\gamma:\{z \in \mathbb{C}, \Re(z)>0\} \rightarrow \mathbb{C}$ holomorphic and bounded. Let $K \subset \mathbb{C}$ compact. Let U be an open neighbourhood of K that is star-shaped with respect to 0 . There exists $C>0$ such that for every polynomial P,

$$
\left\|\gamma\left(z \partial_{Z}\right) P\right\|_{L^{\infty}(K)} \leq C\|P\|_{L^{\infty}(U)} .
$$

Idea of the proof
$\gamma\left(z \partial_{z}\right)$ is a convolution operator

Theorem
Assume $\sup _{n}|\gamma(n)|<+\infty$. Let

$$
K_{\gamma}(\zeta)=\sum_{n} \gamma(n) \zeta^{n}
$$

Then, for $|z|<R$

$$
\gamma\left(z \partial_{z}\right) P(z)=\frac{1}{2 i \pi} \oint_{\partial D(0, R)} P(\zeta) K_{\gamma}\left(\frac{z}{\zeta}\right) \frac{\mathrm{d} \zeta}{\zeta}
$$

Proof. $P(3)=\left\{a_{n}\right\}^{n} \quad$ Cauchy: $a_{n}=\frac{1}{2 i \pi} \oint_{\partial D(0, R)^{5+1}} \frac{P(\zeta)}{5^{n+1}} d$

Theorem (Lindelöf (1905))

Assume $\gamma:\{\Re(z)>0\} \rightarrow \mathbb{C}$ is holomorphic and bounded. Then $K_{\gamma}(\zeta)=\sum_{n} \gamma(n) \zeta^{n}$ extends as a holomorphic function on $\mathbb{C} \backslash[1,+\infty)$.

Theorem (Lindelöf (1905))
Assume $\gamma:\{\Re(z)>0\} \rightarrow \mathbb{C}$ is holomorphic and bounded. Then $K_{\gamma}(\zeta)=\sum_{n} \gamma(n) \zeta^{n}$ extends as a holomorphic function on $\mathbb{C} \backslash[1,+\infty)$.

Idea of the proof.

$$
K_{\gamma}(\zeta)=\int_{\frac{1}{2}+i \infty}^{\frac{1}{2}-i \infty} \frac{\gamma(z) \zeta^{z}}{e^{2 i \pi z}-1} d z
$$

Change of integration path

Proof of the estimate.

$$
\begin{gathered}
\gamma\left(z \partial_{z}\right) P(z)=\frac{1}{2 i \pi} \oint_{\partial \partial(0, k)} P(\zeta) K_{\gamma}\left(\frac{z}{\zeta}\right) \frac{d \zeta}{\zeta} .
\end{gathered}
$$

K_{γ} holomorphic on $\mathbb{C} \backslash[1,+\infty)$.
U stor-shoged with reseed (-0

$$
\Rightarrow \frac{3}{\rho} \notin(1,+\infty)
$$

$$
\begin{aligned}
\left|\gamma\left(z_{3}\right) P(3)\right| \leqslant & \frac{1}{2 \pi} \text { length }(\partial U)\|P\|_{L^{\infty}(\partial U)} \\
& x\|K\|_{c^{\infty}(\text { some coupcd })} \frac{1}{d(0, \partial V)}
\end{aligned}
$$

Tricks

Some refinements

Variants

- Same estimate with γ holomorphic on $\bigcup_{\theta \in(0, \pi / 2)}\{|\arg (z)|<\theta\} \backslash D\left(0, R_{\theta}\right)$, with sub-exponential growth on every $\{|\arg (z)|<\theta\}$
- If γ holomorphic on $\mathbb{C} \backslash D(0, R)$ and $\gamma(1 / z)$ holomorphic at 0 , version with U simply connected with $0 \in U$ (instead of U star-shaped with respect to 0).

Some refinements

Variants

- Same estimate with γ holomorphic on $\bigcup_{\theta \in(0, \pi / 2)}\{|\arg (z)|<\theta\} \backslash D\left(0, R_{\theta}\right)$, with sub-exponential growth on every $\{|\arg (z)|<\theta\}$
- If γ holomorphic on $\mathbb{C} \backslash D(0, R)$ and $\gamma(1 / z)$ holomorphic at 0 , version with U simply connected with $0 \in U$ (instead of U star-shaped with respect to 0).

Following the constants

- Everything is continuous with respect to their natural topologies
$\begin{array}{cccc}L^{\infty}\left(\mathbb{C}_{+}\right) \cap \mathcal{O}\left(\mathbb{C}_{+}\right) & \rightarrow & \mathcal{L}\left(L^{\infty}(U) \cap \mathcal{O}(U), L^{\infty}(K) \cap \mathcal{O}(K)\right) & \text { is continuous } \\ \gamma & \longmapsto & \gamma\left(z \partial_{z}\right)\end{array}$
- $\left\|\gamma\left(z, z \partial_{Z}\right) P\right\|_{L^{\infty}(K)} \leq \sup _{\zeta \in K}\left\|\gamma\left(\zeta, z \partial_{Z}\right) P\right\|_{L^{\infty}(K)} \leq C\|P\|_{L^{\infty}(U)}$ (assuming uniform bounds on $\gamma(\zeta, z)$)

Applications

Applications

Control of the Baouendi-Grushin equation

 See Jérémi Dardē's talk
Applications

Eigenfunction of $-z^{2} \partial_{x}^{2}+x^{2}$ on $(-1,1)$ (with application to the control of a Kolmogorov-type equation)

- $\theta_{0} \in(0, \pi / 2)$, limit $|z| \rightarrow 0,|\arg (z)|<\theta_{0}$
- First eigenvalue: $\lambda_{z}=z+4 \sqrt{\frac{z}{\pi}} e^{-1 / z}(1+O(z))=z\left(1+2 \rho_{z}\right)$
- Asymptotics for the first eigenfunction $g_{z}(x)$?

$$
\left(\partial_{f}-\partial_{v}^{2}+v^{2} \partial_{x}\right) g(f, v, x)=0
$$

$$
\begin{array}{r}
\left\{f_{x}\right. \\
\left.\partial_{r}-\partial_{v}^{2}-i \xi\right\} v^{z^{2-2}}
\end{array}
$$

Applications

Eigenfunction of $-z^{2} \partial_{x}^{2}+x^{2}$ on $(-1,1)$ (with application to the control of a Kolmogorov-type equation)

- $\theta_{0} \in(0, \pi / 2)$, limit $|z| \rightarrow 0,|\arg (z)|<\theta_{0}$

- First eigenvalue: $\lambda_{z}=z+4 \sqrt{\frac{z}{\pi}} e^{-1 / z}(1+O(z))=z\left(1+2 \rho_{z}\right)$
- Asymptotics for the first eigenfunction $g_{z}(x)$?
- Write equation for $w_{z}(x)=e^{x^{2} / 2 z} g_{z}(x)$, solve it as a power series:

$$
\left.\begin{array}{rl}
w_{z}(x) & =1+\rho_{z} \sum_{n>1}(\underbrace{-\frac{1}{2 n} \frac{4^{n}(n!)^{2}}{(2 n)!}}_{\gamma_{z}(n)} \prod_{k=1}^{n-1}\left(1-\frac{\rho_{z}}{2 k}\right)
\end{array}\right) \frac{1}{n!}\left(\frac{x^{2}}{z}\right)^{n} .
$$

That's all folks!

