Local Controllability of some PDEs

In collaboration with Jean-Michel Coron and Hoai-Minh Nguyen

Armand Koenig 18 January 2023

Conférence Itinérante du GDR AEDP

Introduction

Definition

A control system is an equation of the form

$$\dot{X}(t) = f(X(t), u(t))$$

- State space H
- · Control space U
- $f: H \times U \rightarrow H$
- State $X: [0,T] \rightarrow H$
- Control $u: [0,T] \rightarrow U$

Definition

A control system is an equation of the form

$$\dot{X}(t) = f(X(t), u(t))$$

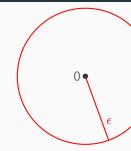
- State space H
- Control space U
- $f: H \times U \rightarrow H$
- State $X: [0,T] \rightarrow H$
- Control $u: [0,T] \rightarrow U$

Control theory

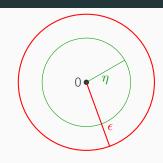
- Range of $u \mapsto X(T)$?
- For every X_0 , $\exists u$ such that X(T) = 0?

Small-time Local Controllability (around 0) $\dot{X} = f(X, u)$ with f(0, 0) = 0.

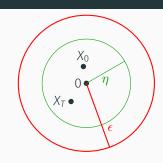
Small-time Local Controllability (around 0) $\dot{X} = f(X, u)$ with f(0, 0) = 0. For $\epsilon > 0$



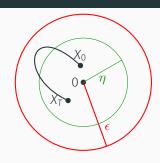
Small-time Local Controllability (around 0) $\dot{X} = f(X, u)$ with f(0, 0) = 0. For $\epsilon > 0$, does there exists $\eta > 0$



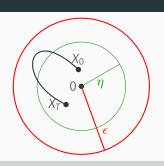
Small-time Local Controllability (around 0) $\dot{X} = f(X, u)$ with f(0, 0) = 0. For $\epsilon > 0$, does there exists $\eta > 0$ such that if $0 < T < \epsilon$, $|X_0| < \eta$, $|X_T| < \eta$



Small-time Local Controllability (around 0) $\dot{X} = f(X, u)$ with f(0, 0) = 0. For $\epsilon > 0$, does there exists $\eta > 0$ such that if $0 < T < \epsilon$, $|X_0| < \eta$, $|X_T| < \eta$, we can find $|u|_{L^{\infty}(0,T)} < \epsilon$ such that $X(T) = X_T$?



Small-time Local Controllability (around 0) $\dot{X} = f(X, u)$ with f(0, 0) = 0. For $\epsilon > 0$, does there exists $\eta > 0$ such that if $0 < T < \epsilon$, $|X_0| < \eta$, $|X_T| < \eta$, we can find $|u|_{L^{\infty}(0,T)} < \epsilon$ such that $X(T) = X_T$?



Theorem (Linear test)

Small-time local controllability holds if the linearized equation is controllable.

Proof.

$$\dot{X} = L_1 X + L_2 u + NL(X, u)$$

$$\mathcal{F}: q \mapsto Y$$
 solution to $\dot{Y} = L_1Y + q$, $Y(0) = 0$

Banach fixed-point theorem to $(X, u) \mapsto (Y, v)$ where

$$\begin{cases} v := \text{Linear control}(X_0, X_1 - \mathcal{F} \circ NL(X, u)(T)) \\ Y := e^{TL_1}X_0 + \mathcal{F} \circ L_2v + \mathcal{F} \circ NL(X, u) \end{cases}$$

A simple quadratic obstruction

$$\begin{cases} \dot{x}_1 = \mathbf{u} \\ \dot{x}_2 = x_1^2 \end{cases} \qquad \dot{x}_2 \geq 0 \text{: no controllability.}$$

A quadratic obstruction in small time

$$\begin{cases} \dot{x}_1 = \mathbf{u} & \text{if } x_2(0) = x_2(T) = 0, \ \int_0^T x_2^2 \le (T/\pi)^2 \int_0^T \dot{x}_2^2 \\ \dot{x}_2 = x_1 & \text{(Poincar\'e). If } T \text{ is small, } x_3(T) \ge x_3(0) \text{: no small-time controllability} \end{cases}$$

Another small-time obstruction?

$$\begin{cases} \dot{x}_1 = \textbf{\textit{u}} \\ \dot{x}_2 = x_1 \\ \dot{x}_3 = x_1^3 + x_2^2 \end{cases}$$
 Small-time local controllability... but not if we ask $|u|_{W^{1,\infty}} \ll 1$!

[Beauchard-Marbach, Quadratic obstructions to small-time local controllability for scalar-input systems, 2018,...]

Outline 5

Previous examples of quadratic obstruction

The control system

The case of a non-controllable linearization

Control of the KdV Equation

KdV Equation

Quadratic Approximation

Nonlinear Equation

Control of a Water-Tank

The Water-Tank System

(Non)controllability for the Water-Tank

Kernel for the Quadratic Approximation

Nonlinear Equation

Conclusion

Previous examples of quadratic obstruction

Schrödinger equation

$$i\partial_t \psi(t,x) = -\partial_x^2 \psi(t,x) + \frac{\mathbf{u}(t)\mu(x)\psi(t,x)}{\mathbf{u}(t)\mu(x)\psi(t,x)}, \quad x \in (0,1) \text{ with Dirchlet B.C.}$$

Theorem (Smallness of reachable space, Ball, Marsden & Slemrod 1982)

Let $\psi_0 \in L^2(0,1)$. The set

$$\{\psi(\mathsf{T},\cdot)\colon\mathsf{T}>0,\;u\in\mathsf{L}^2(\mathsf{0},\mathsf{T}),\;\psi\;\text{solution with}\;\psi(\mathsf{0},\cdot)=\psi_0\}$$

is contained in a countable union of compact subsets of $L^2(0,1)$.

Schrödinger equation

$$i\partial_t \psi(t,x) = -\partial_x^2 \psi(t,x) + \frac{\mathbf{u}(t)\mu(x)\psi(t,x)}{\mathbf{u}(t)\mu(x)\psi(t,x)}, \quad x \in (0,1) \text{ with Dirchlet B.C.}$$

Theorem (Smallness of reachable space, Ball, Marsden & Slemrod 1982)

Let $\psi_0 \in L^2(0,1)$. The set

$$\{\psi(T,\cdot)\colon T>0,\ u\in L^2(0,T),\ \psi \text{ solution with } \psi(0,\cdot)=\psi_0\}$$

is contained in a countable union of compact subsets of $L^2(0,1)$.

Theorem (Local controllability in H^3 around the ground state, Beauchard & Laurent 2010)

 $(\varphi_k)_k$ eigenfunctions of $-\partial_\chi^2$. If $|\langle \mu \varphi_1, \varphi_k \rangle_{L^2}| \ge ck^{-3}$, for every T > 0, for every ψ_0, ψ_1 with appropriate boundary conditions and

$$\|\psi_0 - \varphi_1\|_{H^3} + \|\psi_1 - e^{-i\lambda_1 T} \varphi_1\|_{H^3}$$
 small enough,

there exists $u \in L^2(0,T)$ such that the associated solution satisfies $\psi(T,\cdot) = \psi_1$.

Proof.

Variant of the linear test

Theorem (Quadratic obstruction for small-time local controllability, Coron, Beauchard, Morancey, Bournissou)

If $\langle \mu \varphi_1, \varphi_K \rangle = 0$, under some assumptions on μ , there exists A > 0, T > 0 and $\eta > 0$ such that for every u with $\|u\|_{H^3(0,T)} < \eta$, $\pm \Im \langle \psi(T), \varphi_K e^{-i\lambda_1 T} \rangle > A\|u_3\|_{L^2}^2 - C\|\psi(T) - \varphi_1 e^{-i\lambda_1 T}\|_{L^2}^2$

where
$$u_0 = u$$
, $u_{k+1}(t) := \int_0^t u_k(s) ds$.

Theorem (Small-time local controllability with oscillating controls, Bournissou 2022)

Under more assumptions on μ , the Schrödinger equation with bilinear controls is small-time locally controllable around $\varphi_1 e^{-i\lambda_1 T}$ with targets in $D((-\partial_x^2)^{11/2})$ and controls small in $H_0^2(0,T)$.

Proofs.

$$\psi(t,x) = \varphi_1 e^{-i\lambda_1 T} + \psi_{\text{lin}}(u) + \psi_{\text{quad}}(u) + \psi_{\text{cub}}(u) + \text{error.}$$

Theorem (Viscuous Burgers equation, Marbach 2018)

If y(0,x)=0 and $\partial_t y(t,x)-\partial_x^2 y(t,x)+y(t,x)\partial_x y(t,x)=u(t), \quad x\in (0,1)$ with Dirichlet B.C., for some test function ρ , T>0 small enough, and $u_1(t):=\int_0^t u(s)\,\mathrm{d} s$,

 $\langle \rho, y(T, \cdot) \rangle \geq k \|u_1\|_{H^{-1/4}}^2$

Theorem (Viscuous Burgers equation, Marbach 2018)

If y(0,x) = 0 and

$$\partial_t y(t,x) - \partial_x^2 y(t,x) + y(t,x)\partial_x y(t,x) = u(t), \quad x \in (0,1) \text{ with Dirichlet B.C.},$$

for some test function ρ , T > 0 small enough, and $u_1(t) := \int_0^t u(s) \, ds$, $\langle \rho, y(T, \cdot) \rangle \ge k \|u_1\|_{H^{-1/4}}^2$.

Theorem (Nonlinear heat equation, Beauchard et Marbach 2020)

If $\langle \Gamma[0], \varphi_0 \rangle = 0$, under some assumptions on $\Gamma \in C^2(H_N^1; H_N^{-1})$, there exists $A \neq 0$ such that for every $\epsilon > 0$, there exist T > 0 and $\eta > 0$ such that for every $\delta \in [-1, 1]$ and $\|u\|_{H^{2n+2}} < \eta$, if

$$\partial_t z(t,x) - \partial_x^2 z(t,x) = u(t)\Gamma(z(t))(x), \quad x \in (0,1)$$
 with Neuman B.C., and $z(0) = \delta \varphi_0$ and for $j \ge 1$, $\langle z(T), \varphi_i \rangle \ne 0$,

 $|\langle z(T), \varphi_0 \rangle - \delta + A \|u_n\|_{L^2}^2 | \le \epsilon(|\delta| + \|u_n\|_{L^2}^2).$

where $u_0 = u$, $u_{k+1}(t) := \int_0^t u_k(s) ds$.

Control of the KdV Equation

KdV equation

$$\begin{cases} \partial_t y + \partial_x y + \partial_x^3 y + y \partial_x y = 0, & (t, x) \in (0, T) \times (0, L) \\ y(t, 0) = y(t, L) = 0, \partial_x y(t, L) = u(t) & t \in (0, T) \end{cases}$$

KdV equation linearized around 0

$$\begin{cases} \partial_t y_1 + \partial_x y_1 + \partial_x^3 y_1 = 0, & (t, x) \in (0, T) \times (0, L) \\ y_1(t, 0) = y_1(t, L) = 0, \partial_x y_1(t, L) = u(t) & t \in (0, T) \end{cases}$$

KdV equation

$$\begin{cases} \partial_t y + \partial_x y + \partial_x^3 y + y \partial_x y = 0, & (t, x) \in (0, T) \times (0, L) \\ y(t, 0) = y(t, L) = 0, \partial_x y(t, L) = u(t) & t \in (0, T) \end{cases}$$

KdV equation linearized around 0

$$\begin{cases} \partial_t y_1 + \partial_x y_1 + \partial_x^3 y_1 = 0, & (t, x) \in (0, T) \times (0, L) \\ y_1(t, 0) = y_1(t, L) = 0, \partial_x y_1(t, L) = u(t) & t \in (0, T) \end{cases}$$

Theorem (Rosier 1997)

The linearized KdV equation is controllable in some time (equivalently in arbitrarily small time) iff $L \notin \mathcal{N} \coloneqq \left\{ 2\pi \sqrt{\frac{k^2 + kl + l^2}{3}}, (k, l) \in (\mathbb{N}^*)^2 \right\}$.

If $L \in \mathcal{N}$, there is some finite dimensional unreachable space \mathcal{M} .

Theorem (Rosier 1997)

If $L \notin \mathcal{N}$, the nonlinear KdV equation is small-time locally controllable.

Theorem (Coron and Crépeau 2004)

If L can be written in a unique way as $L=2\pi\sqrt{\frac{k^2+kl+l^2}{3}}$ and that k=l, the nonlinear KdV equation is small-time locally controllable.

Theorem (Cerpa 2007, Crépeau and Cerpa 2009)

If $L \in \mathcal{N}$, there exists T>0 such that the nonlinear KdV equation is locally controllable in time T.

Theorem (Rosier 1997)

If $L \notin \mathcal{N}$, the nonlinear KdV equation is small-time locally controllable.

Theorem (Coron and Crépeau 2004)

If L can be written in a unique way as $L=2\pi\sqrt{\frac{k^2+kl+l^2}{3}}$ and that k=l, the nonlinear KdV equation is small-time locally controllable.

Theorem (Cerpa 2007, Crépeau and Cerpa 2009)

If $L \in \mathcal{N}$, there exists T > 0 such that the nonlinear KdV equation is locally controllable in time T.

Theorem (Coron K Nguyen 2020)

If $k \neq l \in \mathbb{N}^*$, $L = 2\pi \sqrt{\frac{k^2 + kl + l^2}{3}}$ and $2k + l \notin 3\mathbb{N}$, lack of small-time local controllable of the nonlinear KdV equation for H^3 initial conditions with controls small in $H^1(0,T)$.

Order 2

$$\begin{cases} \partial_t y_1 + \partial_x y_1 + \partial_x^3 y_1 = 0, & (t, x) \in (0, T) \times (0, L) \\ y_1(t, 0) = y_1(t, L) = 0, \ \partial_x y_1(t, L) = u(t) & t \in (0, T) \end{cases}$$

Order 2

$$\begin{cases} \partial_t y_2 + \partial_x y_2 + \partial_x^3 y_2 = -y_1 \partial_x y_1, & (t, x) \in (0, T) \times (0, L) \\ y_2(t, 0) = y_2(t, L) = \partial_x y_2(t, L) = 0 & t \in (0, T) \end{cases}$$

Lemma

If $dim(\mathcal{M}) = 2$, we identify $\mathcal{M} \approx \mathbb{C}$, and then for some explicit $p \in \mathbb{R}$ and function ϕ .

$$y_{2|\mathcal{M}}(t) = \int_0^L \int_0^t y_1(s,x)^2 e^{ip(t-s)} \phi(x) dx ds.$$

Theorem

If
$$L = 2\pi \sqrt{\frac{k^2 + kl + l^2}{3}}$$
 with $2k + l \notin 3\mathbb{N}$, if T is small and if u steers y_1 from 0 to 0, $y_{2|\mathcal{M}} = \int_0^L \int_0^T y_1(s, x)^2 e^{ip(T-s)} \phi(x) \, dx \, ds = EN(u)^2 (1 + O(T^{1/4}))$

where $E \in \mathbb{C} \setminus \{0\}$ and $N(u) \sim ||u||_{H^{-2/3}}$.

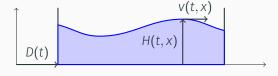
Proof.

- Take Fourier transform in t. For some explicitly computable function $\Lambda(x,z)$, $\hat{y}(z,x) = \hat{u}(z)\Lambda(z,x)$
- Paley-Wiener: if, u steers the linearized equation from 0 to 0 then \hat{u} and $\Lambda(\cdot, x)\hat{u}(\cdot)$ are entire and $|\hat{u}(z)| + |\hat{u}(z)\partial_x\Lambda(z, 0)| \leq Ce^{T|\Im(z)|}$.
- Computations $y_{2|\mathcal{M}} = \int \hat{u}(s)\overline{\hat{u}(s-p)}B(s) ds$, $B(s) \underset{s \to \pm \infty}{\sim} E|s|^{-4/3}$
- In the integral above, the part for $|s| \le m$ is $\le CmT^{1/2}\|u\|_{H^{-2/3}}^2$ (we use the Paley-Wiener property here).

Control of a Water-Tank

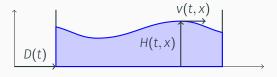
The water-tank system

$$\begin{cases} \partial_t H + \partial_x (vH) = 0, & (t,x) \in (0,T) \times (0,L) \\ \partial_t v + \partial_x (gH + v^2/2) = -u(t), & (t,x) \in (0,T) \times (0,L) \\ v(t,0) = v(t,L) = 0 & t \in (0,T) \\ \ddot{D}(t) = u(t) & t \in (0,T) \end{cases}$$



The water-tank system

$$\begin{cases} \partial_t H + \partial_x (vH) = 0, & (t, x) \in (0, T) \times (0, L) \\ \partial_t v + \partial_x (gH + v^2/2) = -u(t), & (t, x) \in (0, T) \times (0, L) \\ v(t, 0) = v(t, L) = 0 & t \in (0, T) \\ \ddot{D}(t) = u(t) & t \in (0, T) \end{cases}$$



Linearized equation around $H = H_{eq}$, v = 0

$$\begin{cases} \partial_t h + H_{eq} \partial_x v = 0, & (t, x) \in (0, T) \times (0, L) \\ \partial_t v + g \partial_x h = -u(t), & (t, x) \in (0, T) \times (0, L) \\ v(t, 0) = v(t, L) = 0 & t \in (0, T) \end{cases}$$

h(t, L - x) = -h(t, x), v(t, L - x) = v(t, x); not controllable. But moving the tank and such that the water is still at the start and end is possible if $T > T_* = L/\sqrt{gH_{eq}}$.

Theorem (Control using the return method, Coron 2002)

Local controllability in large time: there exists T > 0, η > 0 such that if

$$\begin{split} \|H_0 - 1\|_{C^1} + \|v_0\|_{C^1} < \eta, \\ \|H_1 - 1\|_{C^1} + \|v_1\|_{C^1} < \eta, \\ \|D_1 - D_0\| < \eta \end{split}$$

then there exists a trajectory such that $H(t = 0) = H_0$, $H(t = T) = H_1$, $v(t = 0) = v_0$, $v(t = T) = v_1$, $D(0) = D_0$, $D(T) = D_1$, $\dot{D}(0) = \dot{D}(T) = 0$.

Theorem (Control using the return method, Coron 2002)

Local controllability in large time: there exists T > 0, η > 0 such that if

$$\begin{aligned} \|H_0 - 1\|_{C^1} + \|v_0\|_{C^1} < \eta, \\ \|H_1 - 1\|_{C^1} + \|v_1\|_{C^1} < \eta, \\ \|D_1 - D_0\| < \eta \end{aligned}$$

then there exists a trajectory such that $H(t = 0) = H_0$, $H(t = T) = H_1$, $V(t = 0) = V_0$, $V(t = T) = V_1$, $D(0) = D_0$, $D(T) = D_1$, $\dot{D}(0) = \dot{D}(T) = 0$.

Theorem (Lack of local controllability when the time is not large enough, Coron-K-Nguyen 2021)

For $T < 2T_*$, lack of local controllability with controls small in C^0 : there exists $\eta > 0$ such that if $H(t=0) = H(t=T) = H_{eq}$, v(t=0) = v(t=T) = 0, $\dot{D}(0) = \dot{D}(T) = 0$, and if $\|u\|_{C^0} < \eta$, then u=0.

Proof strategy: $(H, v) \approx \text{linearized} + \text{quadratic}$, and the quadratic term is $> c \|u\|_{u=1}^2$.

Rescalling
$$L = 1$$
, $H_{eq} = 1$, $g = 1$, $T_* = 1$.

Linearized equation

$$\begin{split} &\partial_t h_1 + \partial_x v_1 = 0 \\ &\partial_t v_1 + \partial_x h_1 = -u(t) \\ &v_1(t,0) = v_1(t,1) = 0 \end{split}$$

Rescalling
$$L = 1$$
, $H_{eq} = 1$, $g = 1$, $T_* = 1$.

Quadratic term

$$\partial_t h_2 + \partial_x v_2 = -\partial_x (h_1 v_1)$$

$$\partial_t v_2 + \partial_x h_2 = -\partial_x (v_1^2 / 2)$$

$$v_2(t, 0) = v_2(t, 1) = 0$$

Lemma

$$(h_2(T,\cdot),\phi)+(v_2(T,\cdot),\psi)=\int_{[0,T]^2}K_{T,\phi,\psi}(s_1,s_2)u(s_1)u(s_2)\,\mathrm{d}s_1\,\mathrm{d}s_2$$

for some explicitly computable kernel $K_{T,\phi,\psi}$.

Formula for the kernel (do not read)

With $\Phi(x) = (\phi(x) + \psi(x))/2$ for 0 < x < 1 and $(\phi(-x) - \psi(-x))/2$ for -1 < x < 0, $2K_{T,\phi,\psi}(s_1,s_2) =$

$$\begin{cases} \int_{-2T+2s_{2}}^{0} \Phi(s+T-s_{2}) \, ds + 2(T-s_{2}) \Phi(T-s_{2}) - 4(T-s_{2}) \Phi(T-s_{1}) \\ & \text{if } 2T-1 < s_{1}+s_{2} < 2T \\ \int_{s_{2}-s_{1}}^{2-2T+s_{2}+s_{1}} \Phi(s-s_{2}+T) \, ds + (4T-1-3s_{2}-s_{1}) \Phi(T-s_{2}) - (1+2T-3s_{2}+s_{1}) \Phi(T-s_{1}) \\ & \text{if } 2T-2 < s_{1}+s_{2} < 2T-1 \\ \int_{2-2T+2s_{2}}^{0} \Phi(s+T-s_{2}) \, ds + (1+2T-2s_{2}) \Phi(T-s_{2}) - (-1+4T-4s_{2}) \Phi(T-s_{1}) \\ & \text{if } 2T-3 < s_{1}+s_{2} < 2T-2 \\ \int_{s_{2}-s_{1}}^{4-2T+s_{2}+s_{1}} \Phi(s+T-s_{2}) \, ds + (-2+4T-3s_{2}-s_{1}) \phi(T-s_{2}) - (2+2T-3s_{2}+s_{1}) \phi(T-s_{2}-s_{1}) \phi(T-s_{2}-s_{1}) \phi(T-s_{2}-s_{1}-s_{1}) \phi(T-s_{2}-s_{1}-s_{1}-s_{2}) ds + (-2+4T-3s_{2}-s_{1}) \phi(T-s_{2}-s_{1}-s_{1}-s_{1}-s_{2}-s_{1}-s_{1}-s_{2}-s_{1}-s_{1}-s_{2}-s_{1}-s_{1}-s_{2}-s_{1}-s$$

Lemma

$$\Phi(x) = (\phi(x) + \psi(x))/2$$
 for $0 < x < 1$ and $(\phi(-x) - \psi(-x))/2$ for $-1 < x < 0$. If $1 < T < 2$ and if the control u steers the linearized equation from 0 to 0 (apart from maybe moving the tank),

$$(h_2(T,\cdot),\phi) + (v_2(T,\cdot),\psi) = \int_{[0,T-1]^2} K_{T,\phi,\psi}^{\text{red}}(s_1,s_2)u(s_1)u(s_2) \, \mathrm{d}s_1 \, \mathrm{d}s_2$$
with

with

$$K_{T,\phi,\psi}^{\text{red}}(s_1,s_2) = \frac{3}{2}(1-|s_2-s_1|)\left(\Phi(T-s_1\vee s_2)-\Phi(T-s_1\wedge s_2)\right)$$

Lemma

 $\Phi(x) = (\phi(x) + \psi(x))/2$ for 0 < x < 1 and $(\phi(-x) - \psi(-x))/2$ for -1 < x < 0. If 1 < T < 2 and if the control u steers the linearized equation from 0 to 0 (apart from maybe moving the tank),

with
$$\begin{aligned} (h_2(T,\cdot),\phi) + (v_2(T,\cdot),\psi) &= \int_{[0,T-1]^2} K_{T,\phi,\psi}^{\text{red}}(s_1,s_2) u(s_1) u(s_2) \, \mathrm{d}s_1 \, \mathrm{d}s_2 \\ K_{T,\phi,\psi}^{\text{red}}(s_1,s_2) &= \frac{3}{2} (1-|s_2-s_1|) \left(\Phi(T-s_1 \vee s_2) - \Phi(T-s_1 \wedge s_2) \right) \end{aligned}$$

Proposition

 Φ 1-periodic, $\Phi(s) = s$ for $s \in [1, T]$. For 1 < T < 2 and $U(s) = \int_0^s u(s') ds'$

$$(h_2(T,\cdot),\phi) + (v_2(T,\cdot),\psi) \ge 3(2-T)\|U\|_{L^2(0,T-1)}^2$$

End of the proof.

$$(h, v) \approx \underbrace{(h_1, v_1)}_{\text{linear in } u} + \underbrace{(h_2, v_2)}_{\text{quadratic in } u}$$

Quadratic obstruction for small-time local controllability

- Finite-dimensional systems
- Schrödinger equation with bilinear controls
- Viscous Burgers equation
- Some nonlinear heat equations

Quadratic obstruction for small-time local controllability

- Finite-dimensional systems
- Schrödinger equation with bilinear controls
- · Viscous Burgers equation
- · Some nonlinear heat equations

KdV

- For some critical lengths, lack of small-time local controllability for controls small in H^1 .
- · Small-time local controllability with less regular controls?
- Minimal time for local-controllability?

Quadratic obstruction for small-time local controllability

- Finite-dimensional systems
- Schrödinger equation with bilinear controls
- · Viscous Burgers equation
- · Some nonlinear heat equations

KdV

- For some critical lengths, lack of small-time local controllability for controls small in H^1 .
- · Small-time local controllability with less regular controls?
- · Minimal time for local-controllability?

Water-tank

- A trajectory which is natural for the water-tank is possible for the linearized equation but not for the nonlinear equation.
- · Minimal time for the local-controllability to hold?

The End 19

That's all folks!

Bonus: Coercivity of an arbitrary scalar product for the water tank

Question

Coercivity of Q_{Ψ} :

$$Q_{\Psi}(u) = \int_{[a,b]^2} u(s_1)u(s_2)(1+\epsilon|s_2-s_1|) (\Psi(s_1 \wedge s_2) - \Psi(s_1 \vee s_2)) ds_1 ds_2?$$
(with $\Psi = -\Phi(T-s)$, $Q_{\Psi} = \langle \Phi, \text{ order 2 for the water-tank} \rangle$.)

(with $\Psi = -\Phi(T - s)$, $Q_{\Psi} = \langle \Phi, \text{ order 2 for the water-tank} \rangle$.)

Question Coercivity of Q_{Ψ} :

iff

positivity.

Lemma
$$\Psi \in C^1, \ \Psi' \geq c > 0. \ Then,$$

$$Q_{\Psi}(U') > \alpha \|U\|_{L^2}^2 \ for \ every \ U \in H^1_0(a,b)$$

 $Q_{\Psi}(u) = \int_{[a,b]^2} u(s_1)u(s_2)(1+\epsilon|s_2-s_1|) (\Psi(s_1 \wedge s_2) - \Psi(s_1 \vee s_2)) ds_1 ds_2?$

 $\int_a^b \Psi'(s) \, \mathrm{d}s \int_a^b \frac{1}{\Psi'(s)} \, \mathrm{d}s < (b-a+2\epsilon^{-1})^2$ **Proof.** Integrate by parts; consider the resulting formula as a quadratic form on $L^2(\Psi'(s) \, \mathrm{d}s)$; see that on a stable space with codimension 2, $Q_\Psi = \mathrm{Identity}$; compute explicitly the 2 × 2 matrix on the orthogonal and study its